Like most manufacturers, we go to great lengths to make our products as safe as possible- but operators can still get hurt.

In virtually every case, injury is the result of:

- Not knowing how to properly operate the machine;
- Not following proper operating and safety procedures;
- Carelessness or inattention;
- Trying to "take a short cut;"
- Poor maintenance.

For your personal safety, and to get the maximum efficiency out of this precision machine; read and follow operation instructions carefully.

Standard Safety Precautions for operating the HANDFEED Surface Grinder:

- Not knowing how to properly operate the machine;
- Not following proper operating and safety procedures;
- Carelessness or inattention;
- Trying to "take a short cut;"
- Poor maintenance.
- NEVER operate machine without safety glasses.
- NEVER operate machine without wheel guard in place.
- DO NOT wear tie, scarf, ID bracelet, neck chain or other object that could become entangled in the machine or work piece.
- ALWAYS wait for wheel to stop before bringing your hands to table or work piece.
- MAKE CERTAIN work piece is SECURELY held in place.
- NEVER attempt to hand hold or hand feed a work piece.
- NEVER exceed machine's capacity.
- Use proper grade grinding wheels and keep them dressed.
- Stop the machine and correct any malfunction immediately (see Maintenance manual or contact your supervisor).
- Inspect and maintain machine by schedule-not by chance.
- Keep hands and clothing away from table when operating.
- If you're not a qualified electrician, do NOT tamper with electrical connections or wiring. Report any suspected electrical malfunction immediately.
- Lock table when not grinding.

**IMPORTANT NOTICE**

Although reasonable care has been exercised in the preparation of this HANDFEED Operator's Manual to make them complete and accurate, they do not purport to cover all conceivable problems or applications pertaining to this machine.

**CAUTION**

The following VIOLATIONS will VOID your WARRANTY

USING anything other than Harig® Way Lube Oil™ (P/N 16211245)
ALTERATIONS to the following parts: CASTINGS, ELECTRICAL, LUBRICATION, COOLANT, and HYDRAULICS

**INSTRUCTIONS ON GRINDING THE BOTTOM OF THE CHUCK**

1. Place the chuck, top down, on a surface plate. The object of this is to determine if the center of the chuck is high. With an indicator press at different areas to determine if the chuck rocks in the center you have determined the chuck is high III the center you will need to shim one end, so the chuck will be stable and not rock while grinding. A chuck with a warped bottom when installed and tightened, will permanently warp the table, this will affect the performance of the machine for life.
2. Block each end of the chuck to prevent from moving while being ground.
3. Using a general-purpose medium hardness 46 grit type-grinding wheel. WET GRIND using any ion-nitrate or inhibited-nitrate coolant.
4. Depth of cut can vary depending what grit wheel and how much cross feed.
5. Table speed 20 to 40 surface feet.
6. When total surface is flat you are ready to turn over and grind the top surface
Refer to the owner’s manual for instructions (Grinding in Chucks). (See Fig. 16 for Chuck Torque)

If you have any questions regarding these procedures please contact your dealer.
Harig Grinder Preventative Maintenance Check List
PREFORMED BY THE OPERATOR DAILY

Customers Name ___________________________________________________________________

Machine Type ____________________________________ S/N ____________________________

☐ Check way lube level. Fill as needed.
☐ Check ways for proper oiling. If more oil is needed turn oil adjustment control a 1/8 of a turn, observe performance and increase if needed.
☐ Clean machine with vacuum and/or treated dust cloth (Caution do not use air blast.)
☐ Check lube lines for leaks.
☐ Check table for smooth operation; make sure there is oil on ways.
☐ Check operation of coolant pump. Clean tank, change coolant if needed.
☐ Check spindle for noisy operation.
☐ Make maintenance recommendations for any potential problems found.

____________________________________________________________________________________
____________________________________________________________________________________
____________________________________________________________________________________
____________________________________________________________________________________
____________________________________________________________________________________

Checked by ________________________________________________ Date _____________________
Customers Name ____________________________________________

Machine Type _____________________________ S/N ____________________________

☐ Every 1000 hrs: Clean oil pump filter, clean reservoir and change oil.
☐ Check lube lines for leaks.
☐ Every 1000 hrs: Check hydraulic pump pressure, fluid level and filter. Clean filter if needed.
  To add hydraulic oil use a good grade of (150 SUS) hydraulic oil.
☐ Every 5000 hrs: replace hydraulic oil with a good grade. (150 SUS)
☐ Every 6 months: check level of machine.
☐ Check coolant pump. Clean tank, change coolant, when dirty.
☐ Every 1000 hrs: check axis belts. (Autostep, CNC, Ez Surf)
☐ Every 1000 hrs: Check axis motors for noise or excessive heat. (Automatics, Autosteps, CNC and Ez Surf)
☐ Make maintenance recommendations for any potential problems found.

____________________________________________________________________________________
____________________________________________________________________________________
____________________________________________________________________________________
____________________________________________________________________________________
____________________________________________________________________________________

Checked by ___________________________ Date ___________________________
INDEX

612 & 618
HANDFEED
SURFACE
GRINDER

Contents

<table>
<thead>
<tr>
<th>Nomenclature</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Installation &amp; Set Up</td>
<td>3-4</td>
</tr>
<tr>
<td>Operation</td>
<td>4-5</td>
</tr>
<tr>
<td>Power On</td>
<td>4</td>
</tr>
<tr>
<td>Longitudinal Feed</td>
<td>4</td>
</tr>
<tr>
<td>Cross Feed</td>
<td>4</td>
</tr>
<tr>
<td>Elevating Mechanism</td>
<td>4</td>
</tr>
<tr>
<td>Grinding Wheel Mounting</td>
<td>5</td>
</tr>
<tr>
<td>Grinding Magnetic Chucks</td>
<td>5</td>
</tr>
</tbody>
</table>

Maintenance

<table>
<thead>
<tr>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cleaning</td>
</tr>
<tr>
<td>Lubrication</td>
</tr>
</tbody>
</table>

Troubleshooting

<table>
<thead>
<tr>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ordering Replacement Parts</td>
</tr>
<tr>
<td>Chatter or Vibration Marks in Finish</td>
</tr>
<tr>
<td>Longitudinal Lines – Scratchy Finish</td>
</tr>
<tr>
<td>Inaccurate Grinding</td>
</tr>
<tr>
<td>Motor Does Not Run</td>
</tr>
<tr>
<td>Oil Dripping</td>
</tr>
<tr>
<td>Uneven Down Feeding Response</td>
</tr>
<tr>
<td>Improper Longitudinal Feed</td>
</tr>
<tr>
<td>Cross Feed Malfunction</td>
</tr>
</tbody>
</table>

Drawings – Part Numbers

<table>
<thead>
<tr>
<th>Fig.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spindle On/Off Switch and Part List</td>
</tr>
<tr>
<td>Lubrication System</td>
</tr>
<tr>
<td>Spindle and Elevating Assembly</td>
</tr>
<tr>
<td>Elevating Screw and Hand wheel Assembly</td>
</tr>
<tr>
<td>Cross Feed</td>
</tr>
<tr>
<td>Longitudinal Feed Cable, Rack and Pinion</td>
</tr>
</tbody>
</table>

Harig Products
1875 Big Timber Rd.
Elgin, IL 60123-0538

Support & Parts
847-695-1000
Step 1. Do Not Remove Skid.
Do not remove skid until the machine has been moved adjacent to its installation site.

Step 2. Lift Grinder from Skid and Position.
Before moving the elevating hand wheel to remove the wood brace between the table and spindle housing, remove the plastic temporary dust cover from the top of the column and slowly pour 2 ounces (1/4 cup) of way oil (the gallon container in the “standard accessory box” found on the left rear corner of the machine skid) over the bevel gear.

2.1 Place ¾” steel bar through holes near bottom of grinder base (Fig. 3).

2.2 Attach 1800 lb. Lifting strap to ends of bar and join near top of column. Strap to top of column. Pad machine adequately to prevent damage to finish (Figure 4).

2.3 Remove the four ½-13 head bolts holding the base cabinet to the skid. Caution: do not lift by motor, spindle, table or saddle.

2.4 Lift slightly from skid. Loosen locking thumbscrew. (A, Fig. 9, page 4) balance machine by turning feed hand wheel. For safety, support the machine on two 4ft. pieces of 4 X 4 while installing leveling legs.

2.5 Screw 4 leveling legs (located in “standard accessory box”) into the holes in the base cabinet to project 5/8” below the bottom.

Step 3. Position Machine
Position machine where desire. No special pad, floor reinforcement or drip pans are required.

Remove grease from table hand wheels and exterior surfaces with clean rag. It is not necessary to disassemble anything, as all interior surfaces are factory prepared. Do not use solvents or abrasive that may damage machine’s finish.

Step 5. Level Machine
5.1 Crank table all the way to the right and all the way toward the column.

5.2 Raise left front leveling leg ¼” off the floor.

5.3 Place level on table platen and adjust the three remaining legs to level the table in both direction.

5.4 Lower left front leg to floor and give it an additional 1/8 turn.

Step 6. Assembly
Use three round head screws (furnished) to fasten Elevating screw Guard to Column Cap. (Figure 5)

Step 7. Wet Coolant.
If wet coolant attachment has been purchased with a 618, loosen the three-¼ turn coolant compartment screws (fig. 6) and assemble as per instruction packed with the system. A wet coolant system purchase with 612 is placed along side the machine.

Step 8. Lubrication.
8.1 Fill lube oil reservoir (cup at rear of machine). If needed, add way oil from the gallon furnished to bring level up to nearly full (Figure 7)

8.2 Ways and feed screws are automatically lubricated.

8.3 Spindle and motor bearings are permanently lubricated.

8.4 If machine has a rack and pinion type longitudinal table travel, this assembly was greased at the factory. Add a small amount of grease to the rack each month.
**SETUP**

**OPERATION**

**Power On**

**Table Feed**

---

**Step 9. Electrical connections.**

**Caution:** electrical connections or Services. To preclude personal injury, or extensive Machine damage, an authorized Harig distributor must perform all electrical services. Violation will void the warranty.

9.1 Ground machine by connecting the green wire to a satisfactory ground. *Neither the building structure nor a hot water pipe is a satisfactory ground.*

9.2 Compare rating label on the back of the spindle motor with house current to make certain they correspond.

9.3 Connect line cable wire to house current system *(A- Fig. 8)*

9.4 Remove wheel. Stand in front of machine. Turn Spindle Motor ON. It should rotate C LOCK-WISE. If not, switch any two of the three wire connections.

---

**Power On.**

To turn the spindle motor on, pull out the red E-Stop button located on the front of the cabinet. Turn spindle to Start. *(Figure 1)*

This also starts the lubricating system oil pump. After 1 minute, the oil level should rise to the midpoint of the sight glass on the column cap of the machine. This shows that the machine is ready for operation.

The 1.5 HP motor furnished as standard with this machine has enough power to take as heavy a cut you will normally wish when cross feeding and grinding without coolant, it is relatively easy to overload the motor. The switch incorporates overload protection. If the overload switch trips, allow sufficient time for the overload to cool, then press the start button to restart the motor.

---

**Longitudinal Feed**

Feed the table by operating the large hand wheel. If your grinder has a cable drive *(rather than a rack and pinion drive)* you can readjust the position of the handle on the wheel by cranking the table to the end of its travel and continuing to turn the wheel *(slipping the cable)* to the desired position.

---

**Cross Feed.**

Achieve manual cross feed by loosening the cross feed travel-locking thumbscrew *(A, Figure 9)* on the right side of the base under the table one turn, and operating the cross feed hand wheel.

---

**Elevating Mechanism.**

Raise or lower grinding head assembly by turning hand wheel *(B, Figure 10)* on the right side of the top of the column.

To change zero setting, loosen two knurled screws *(A, Fig. 10)* projecting from face of wheel, slide calibrated slip ring to desired position, and retighten screws.

To engage “fine feed” *(optional equipment)*, tighten one large knurled screw. *(A, Fig. 11)* One revolution of the “fine feed” knob changes elevating screw setting by .001 inches. To disengage “fine feed”, loosen knurled screw ½ turn.
Grinding Wheel Mounting

The grinding wheel furnished with your machine was chosen to satisfy average shop work requirements. Use only balanced wheels to ensure getting the maximum quality this precision machine is capable of producing. When specific problems regarding wheels selection are encountered, contact a grinding wheel manufacturer or its local representative for recommendations.

The spanner wrenches (furnished) fit the wheel-nut, which holds the grinding wheel on the adaptor, and the two holes in the back of the adaptor. Unless a right-hand thread has been specifically ordered, the wheel nut has a left-hand thread (letters LH stamped on face of nut) so that the wheel will tend to tighten under starting torque. When changing wheel, be sure adaptor is retightened. If left loose, wheel may shift and cause chatter marks.

The socket on one spanner wrench fits the nut holding the adaptor on the spindle. To remove adaptor, unscrew nut completely (left-hand thread) and screw in the “puller” (furnished) until the center screw hits the spindle end. Tighten center screw until adaptor is free. (Fig. 12)

Grinding Magnetic Chucks

A magnetic chuck with an untrue bottom can distort a surface grinder table to which it is clamped. For this reason, the bottom should be wiped dry, placed on a surface plate and checked for bow. If the chuck rocks or pivots rather than having an even drag, place it face down on the platen and grind the bottom flat. (Block in, do not clamp down) If a surface plate is not available, use the grinder’s platen.

Caution: Never grind the platen, as this can impair accuracy.

Grinding the chuck surface requires special technique and great care. The “lead” filling between the magnetic poles tends to load the wheel and will cause the unsupported areas of the chuck over the magnet to move with any temperature difference created by grinding. Follow these instructions carefully:

1. Use a relatively coarse grit wheel of medium grade and open structure with a vitrified bond.

2. Dress wheel rather coarsely with a sharp diamond. Cross feed the diamond at a fairly rapid rate and do not pass under wheel unless down feed at least .0005 inches. Tighten screws holding chuck to table with minimum force needed to keep chuck in place. Over tightening may cause warping. (See Fig 16)

3. Chuck must be in “on” position while being ground

4. Set depth of each cut to .0002”

5. Take a cross feed cut of at least .060 inch for each pass.

6. Dress wheel after each cut across chuck to remove any “lead”

7. A loaded wheel, whether caused by heavy cuts, improper dressing or the wrong type of wheel, can create heat building sufficient to warp center of chuck up into the wheel and seriously affect grinder accuracy.

The 9A-46-H8-V52 wheel furnished with the machine works well if used with a mist or wet coolant and can be used dry if care is used to prevent heat buildup. If difficulty is experienced, use a still softer and more open wheel such as a 32A46-G12VEP.
MAINTENANCE
Cleaning
Lubrication

This precision surface grinder is equipped with an automatic “Flo-Clean” oil system. Unlike other grinder, this completely separate system circulates, filters and re-circulates the cleaned lubricating oil. All moving mechanical and wear surfaces are automatically and continuously flushed with filtered oil whenever the spindle is running.

Cleaning.

This machine requires only surface cleaning. All internal parts are cleaned automatically by the built-in system mentioned above. When cleaning the external surfaces:

1. Center table to prevent dirt and grit from being brushed onto ways.

2. Never use an air blast to clean machine. Use a vacuum and/or treated dusting cloth. Remove dirt—don’t just move it.

3. Make certain that exhaust from vacuum or dust collector is not directed toward grinder and particularly not at underside of table.

4. If solvents must be used to clean surfaces, use caution not to drip on ways. Do not use a lacquer base or other solvent, which may damage machine’s baked enamel finish.

Note: we recommend centering the table when machine is not in use to provide a dust cover for the table ways.

Lubrication.

Since the motor and drive are permanently lubricated and sealed, the only lubrication maintenance required are the following periodic checks:

EVERY 100 HOURS OF OPERATION:

Check the large oil cup in the rear of the machine. If less than half full, add enough Harig Way Oil (No. 16211245, furnished with machine)
To bring level nearly full (Figure 7)

EVERY 1000 HOURS OF OPERATION:

Clean the oil pump filter. Unscrew dust guard retaining screw and remove guard. (Fig.13) Remove pump from sump. With pump upside down remove the retaining clip (Fig. 15) from filter cup (be careful not to puncture screen) and remove screen. Clean pump, screen and sump, and reassemble and refill with new way oil.

In addition to the above instructions, check the oil run off bottle. The bottle is located inside the front storage compartment.

Disconnect the hose, empty the waste oil, reconnect the hose, and return the empty bottle to its original position.

Note: disposal procedure for all waste oil must be in accordance with local, state and federal regulations

Caution
Using anything other than Harig oil will void the Warranty
Harig oil part number 16211245
TROUBLESHOOTING
Adjustments
Chatter

1. CHATTER OR VIBRATION MARKS IN FINISH.

A. Wheel loose on sleeve. Put additional tension on wheel adaptor nut. Even if nut is not loose, motor starting torque may be causing wheel to shift slightly. Redress after adding tension to wheel nut.

B. Wheel out-of-balance. All grinding wheels are out-of-balance. It is only a question of how much. (One can verify this by holding the projecting part of the spindle housing while the grinder is running with the wheel, wheel nut and washer removed, and by comparing the vibration with the wheel mounted in place) Balance the wheel with a Harig Wheel Balancer (No. 17794350) or comparable unit. If the wheel has been balanced, dressing the wheel at the grind point can minimize the chatter and taking a finishing cut that puts the same drag on the wheel as the dressing operation. The wheel is dressed out-of-round to compensate the amount of vibration. If a heavier cut is taken, however, the chatter will occur because of the “hammering” of the out-of-round wheel at a different vibration rate.

C. Wheel not dressed on sides. If the wheel has not been dressed on the sides, chatter or vibration pattern can result because of the side-to-side movement of the edge of the wheel, and because of the surfaces of a wheel next to the mold are harder than the rest of the wheel.

D. Wheel in need of dressing. If a Harig Accu-Dresser is used to dress an unbalanced wheel, chatter in the finish will result because the wheel is dressed round and will “hammer” by the amount of vibration. A balanced wheel will give you more pieces between dresses because of the elimination of this “hammering”.

Figure 17

If a Harig Accu-Dresser is used to dress an unbalanced wheel, chatter in the finish will result because the wheel is dressed round and will “hammer” by the amount of vibration. A balanced wheel will give you more pieces between dresses because of the elimination of this “hammering”.

Caution: Electrical tests or services should be made by qualified electrician to preclude personal injury or extensive machine damage. (An authorized Harig distributor must perform all electrical service). Violation will void the Warranty.

Ordering Replacement Parts. When repair part are ordered, be sure to include the serial number of the machine as well as the part number shown in the following drawings. The machine serial number is stamped into the column cap casting next to the elevating hand wheel. Service or parts, call 847-695-1000
E. Loss of preload.

Occasionally, due to a phenomenon called fretting corrosion (usually caused by out-of-balance wheels), the rear bearing outer race will freeze in the spindle sleeve and the wave springs no longer hold the spindle back against the front bearings. To check for loss of preload, place an indicator against the spindle nose as shown in Figure 17. Push against wheel guard with thumbs, pulling wheel forward while watching indicator. When release, needle should instantly return to original position. If the needle returns to original position only by rotating wheel by hand, return spindle to factory for repair. Be sure to state that there was loss of preload on this test.

F. Grade of wheel too hard.

Loading up or glazing of the wheel, particularly if grinding without coolant can cause chatter. Replace wheel with one of a softer grade.

G. Taper of adaptor sleeve in error.

If the taper in the wheel adaptor sleeve is not the same as that on the spindle nose, or if a piece of dirt or grit has been assembled on the taper, chatter can appear on the work. To check the adaptor sleeve, put a thin film of Prussian blue inside the sleeve and press it on the spindle. The spindle taper should show contact all around the circumference on two separate rings.

H. Use of phase converter.

Phase converter used to run a three-phase motor on a single-phase supply will also affect finish and motor sound because of the unbalance current a converter delivers. The type of converter that switches out of the circuit after starting the motor will cause a poorer finish than a single-phase motor.

The type of converter that stays connected and is rated to run the spindle motor, will give a better finish than a single-phase motor.

I. Ball bearing failure.

The super precision bearing, used in the Harig spindle, is sized to give an average life of many years of service. If a failure of either the spindle or motor bearing does occur, a chatter will appear on the work being ground, and a noise will be heard when the spindle is running. (Wheel, wheel nut and washer should be removed to make certain an unbalanced wheel is not causing the noise.)

J. Unbalanced electric supply.

If the three-phase current supplied to the machine is not reasonably uniform, a poor finish will result.

2. LONGITUDINAL LINES – SCRATCHY FINISH

A. Wheel too soft for material being ground.

The grains in too soft wheel will pull out before they have really dulled. The dressed surface will be lost too quickly and the few remaining pointing grain will give a scratchy appearance. Replace with a harder wheel.

B. Wheel dressed too finely, or wheel too hard.

If wheel if not cutting freely, longitudinal lines in the finish, sometimes discolored or burnt, will result. Replace with a softer grade wheel or pass a diamond across the wheel at a faster speed when dressing. Do not dress the wheel without a down feed before each pass.

C. “Hard-Shell” sides on wheel.

Break the corners of the grinding wheel with an abrasive stick.

D. Grinding swarf in coolant.

Clean out coolant tank.

3. INACCURATE GRINDING.

A. Magnetic chuck clamped too tightly or too loosely

A chuck or fixture clamped too tightly may warp the table, causing it to rock in the saddle ways rather than tracking smoothly. If chuck is not clamped tight enough, it could shift position and lift up and over dirt. Tighten one of the clamps firmly to hold the chuck in position when the table reverses. Then tighten the other clamp only enough to keep the chuck down on the table. (Fig. 16)

B. Wheel glazed; not cutting freely.

Redress wheel, or replace wheel with a softer grade.

C. Machine out-of-level

Be sure that cabinet was leveled according to installation instructions. Thickness of the four vibration isolation pads that support grinder on the base cabinet has been adjusted to support the grinder base so that the V-ways are exactly parallel with the plane of the flat ways. If grinder base is located on anything other than its own base cabinet and vibration isolation pads, check base ways for twist by laying a small surface plate on two 1.000 inch rolls in the V-ways and two .582 inch parallels on the flat ways of the base. If the two rolls are placed at the ends of the V-ways and one of the parallel put in the center of the flat way, the height of the pad should be adjusted until you get the same “feel” at either end of the way with the other parallel.

D. Magnetic chuck in need of dressing.

See “grinding magnetic chuck” in the operating instructions in this manual on Page 5.
E. Grinding wheel shifted on adaptor.
If the wheel is not tight enough on the adaptor, it can shift when grinder is turned on and off, or when a heavy cut is taken. This could cause grinder to cut an additional few thousandths, as well as giving a chatter appearance on the surface.

F. Down feed inaccurate.
See section “uneven Down Feeding Response” on page 9

G. Side grinding not square.
If cartridge spindle has been replaced in the machine, it may be necessary to realign the spindle in its housing by adjusting tension on the five set screws that hold it in place. (The 5/16” diameter by 5/16” long set screws shown in (Fig. 20) To check squareness of the spindle to the longitudinal travel, an angle plate can be indicated parallel to the table travel as shown in (Fig. 5) of our Final Inspection Report, and an indicator fastened to the nose of the table can be swung as shown. If indicator has a higher reading for the right hand position shown in (Fig. 5), slightly tighten the right front and left rear setscrews on top of the spindle housing to shift the spindle slightly. The angle plate can also be used to check the spindle axis parallelism to work the table as shown in (Fig. 3) of the Final Inspection Report. Varying the tension applied by the bottom set screw, against the tension of the top set screws, can change this indicator reading slightly.

H. Work piece not parallel.
If machine does not grind parallel front-to-back, be sure cross feed lock screw (A, Fig. 9) is loosened enough so the pressure pin is not rubbing on the carriage's locking strap.

I. Long spark out time.
If the grinder does not “spark out” after a reasonable number of passes, make sure that Harig way oil is being used. The pressure oiling system floods the ways with so much oil that a higher viscosity lubricant can lift the table a few tenths when light cuts are taken.

4. MOTORS DO NOT RUN.
A. Fuse blown out.
If spindle motor will not run, or is running at a slow speed, one or more fuse may be blown. Check lines leading to the machine to make sure plant circuit fuses are not blown. Caution: Qualified personnel should make all checks of the electrical system.

On rare occasion a fuse will blow under normal machine usage. If a fuse bows repeatedly, however, the cause must be found and corrected.

Note: A stalled motor can blow a fuse. Wiring to the motor should be inspected to make sure there are no loose connections. Check particularly in the connection box to the motor that insulation has not been worn through causing grounding out to the machine frame.

B. Overload relay tripped.
The spindle may stop because its overload relay is tripped. To restart the spindle, allow sufficient time for the overload to cool, then press the start button. If a special electric option has been chosen, either a spindle overload or a lube pump overload may cause the spindle to stop. To reset, press the reset button on the appropriate relay, unless they are set for automatic reset.

If the spindle motor overload is tripping regularly, chances are that too heavy a cut is being taken with the grinding wheel, or that the wheel is loading up and putting extra strain on the motor. A 1.5 HP motor will have enough power to take as heavy a cut as the operator normally wishes if table is cross feeding and coolant is not being used. If coolant is used when cross feeding, or if plunge grinding is being done, it is easy to take a cut that will require more than 1.5 HP. Under these conditions, check the current consumption of the spindle motor to make certain it is not drawing more than the full load motor current.

C. Motor burnt out.
All motor used on your grinder have a design life of many years. A burnt out motor will usually draw an excess of current and trip the motor overloads, blow fuses, or overheat in one spot. It may, however, overheat an internal connection and cause a wire to break loose. Checking motor circuit with an ohmmeter should locate any internal breaks. An ammeter check on motor current on each of the three legs of a three phases motor will show a shorted out section of winding by drawing more that the rated full load current. (Fig. 18)

Caution:
Electrical testing or services may preclude personal injury or extensive machine damage. An authorized Harig distributor must perform all electrical service
Violation will void the Warranty

The maximum temperature at which a motor can be safely operated depends on the class of insulation of its windings. A motor stamped class A can reach a temperature of 203°F and still be within the manufacturer’s specifications.
TROUBLESHOOTING
Uneven Down Feeding Response

5. OIL DRIPPING.

A. Machine not level.
Oil dripping from underside of the table ways can be caused by machine improperly leveled. Recheck leveling and follow installation instructions if machine is not leveled.

B. Restricting valve opened too wide.
Check setting of restricting valve (Part No. 16211072) by loosening the two screws and sliding guard up so screw heads will pass through the key hole slot in the guard. Reset valve by closing it down completely and then reopening ½ turn. If dripping from ways continues, close valve back to the point where it is opened approximately 1/4 of a turn.

6. UNEVEN DOWN FEEDING RESPONSE.

A. Wheel too loose.
If grinder has been stopped and restarted, with the wheel insufficiently tight, the wheel may have shifted slightly when the motor was restarted, cutting an additional amount because of being off center. Retighten grinding wheel.

B. No oil on column ways.
Check oil level in sight glass at the top of the column shortly after motor is turned on. If oil does not appear, make sure that oil cup on the back of machine base is nearly filled. Add oil if necessary. If oil is at the proper level, see that is clean. (See Lubrication under Maintenance.) Check that oil line are intact and on their proper fittings as shown in (Fig. 19).

C. Spindle housing assembly sticking in column ways.
The exceptional rigidity of the Harig grinder is obtained by an extremely close fit on the column ways. Since there is only a few tenths clearance between the spindle housing and column, any dirt or grit, or every small warping of the back plate, could cause spindle housing to “hang up” in the ways.

Check for this condition by mounting an indicator in the wheel guard or spindle housing to touch a block on the grinder table. Turn down feed hand wheel and note response on the indicator. The 100 lb. combined weight of the motor. Spindle and housing, and guard assembly should keep the bevel gear carrying the elevating screw firmly seated in the thrust ball bearing in the column cap. (See Fig. 21) The only slack that should be seen as column is raised and lowered with the hand wheel should be the small amount between the bevel gear and pinion on the hand wheel shaft. If the response between hand wheel readings and the indicator show a slack of several thousandths rather than the normal half thousandths slack between the pinion and the bevel gear, the spindle housing assembly is probably “hanging up” in the column ways until the bevel gear is backed up to the pinion and forces the elevating screw down.

To inspect column ways, first remove the grinding wheel from the spindle. Then remove the wheel guard by loosening its clamping screw and sliding it off the end of the spindle. Loosen the five 5/16 set screws holding the spindle cartridge in the housing approximately 1/8”. The spindle cartridge and motor assembly can now be removed from the back of the machine. Take out the six Phillips head screws holding the back dust guard retainer in place and remove the dust slides and retainer. Crank the saddle away from the column and remove the six Phillips head screws holding the front dust slides. Now alternately crank the spindle housing to the top and then to the bottom of the travel, wipe off the ways with a clean cloth and inspect. Clean any dirt or grit. Check to see is a piece of grit has scored the ways. If so they should be dresses with a fine stone to remove any ridges.

If the column way surfaces are clean and smooth and the spindle assembly is still sticking, either the spindle slide back plate has warped or the column uprights have moved closer together by a few tenths. If the spindle is tight in only a small area, scrape the back ways of the column to remove the high spot. Applying a thin layer of red lead to the ways and running the housing assembly up and down can find the high areas of the way.

If the assembly is tight over the entire column, remove back plate from the spindle housing by taking out the six 5/16 screws holding it in place. Crank the spindle assembly to the bottom position and push the housing just far enough away from the column to inspect the 45° ways. If there is no evidence of scoring or a piece of grit lodged in the casting, grind .0003” off the two surfaces of the back plate that ride on the back column ways. Accurately check the step between the way surfaces of the back plate and the center part that is screwed to the spindle housing before grinding the way surface, so the entire back plate can be reground if found to be warped. Reassemble the back plate to the spindle housing. If still too tight, remove an additional .0003” from the way surface.
If the 45° way of the spindle housing is scored, remove housing from the column as follows:
- Mark elevating screw (Fig. 20) at the point where it enters the spindle housing so that it can be turned to the same point when the grinder is reassembled.
- Loosen the 1/4-20 X 1” screw that holds the elevating screw in place. (see Fig. 20)
- Unscrew elevating screw from the housing and run it up to clear by holding screw with one hand and turning elevating hand wheel with the other.
- Spindle housing can then be removed from the column and any score marks stoned off smooth.

D. Spindle housing too loose.
If error in down feed response is less than .001”, the spindle housing assembly may be too loose in the column ways. Remove motor spindle assembly and dust guards as outlined in previous paragraph. Determine amount of looseness by placing an indicator on grinder table to read against the part of the spindle projecting to the front of the grinder. With the column way wiped clean of oil, alternately twist the spindle housing from one side to the other. The difference of the indicator reading when the twisting pressure is released should be less than a half a thousandth. Make this check at both the top and bottom positions of the spindle housing, as well as in the middle, and use the lowest reading. Remove the back plate from the spindle housing. Then remove ¼ of the difference between the at-rest indicator readings from the center area of the back plate that is clamped against the spindle housing. For example, if .0012” slack is found, remove .0009” from the center area of the place.

E. Spindle assembly creeps down.
Because of the exceptionally smooth action of the down feed mechanism, it would be possible for the spindle assembly to creep down or “unwind” itself if a frictional drag were not used. This creep is most likely to occur is a vibration caused by an off balance wheel is occurring. The wave spring No. 17748702 adds a drag to the system by pressing the nylon washer No. 16213102 against the moving thrust bearing inner race and the second washer No. 16213128 against the stationary top column bridge. (See Fig. 20)

If extra drag is wanted for an out of the ordinary problem where the wheel balance cannot be corrected, order a ‘C’ spring No. 16213088 and install by removing the three screws that hold the elevating screw. Guard in place and lifting the guard off. Drop the open end of the C spring under the bevel gear. Push the back end of the C spring down with a screwdriver until the spring is horizontal, and move the spring side ways to snap across the high point of the gear and fit in the angular space between the bearing race and the bevel gear.

7. IMPROPER LONGITUDINAL FEED

A. Improper longitudinal feed (cable drive machine only). If table does not move when hand wheel is turned. Tighten cable. Loosen cable hook locknut (See Fig. 23) and tighten the adjusting nut to pull the cable tighter. Do not over-tighten, as this may cause cable to break prematurely, or wear a flat surface into the nylon cable covering. Tighten only enough to pull the table without slip.

B. 612 Cable broken or worn.
To replace cable, run table to the right and loosen the nut on the back of the hook until the cable loop can be slipped off. Remove the loop from the post under the left end of the table. Slip the two coils of cable off the roll of the hand wheel shaft and pull the cable out.
To install new cable, pass soft wire through the cable space from the right side of the machine. Bend over a loop or hook to attach the wire to a loop of the new cable and pull it back through the space. Form two coils in the cable and slip them over the cable roll. Put the loop over the post on the left and draw the cable loop onto the hook. Tighten the nut to put tension on the cable. Run the table back and forth and observe the cable on the roll. If it runs partly off the back end when the table is run to the left, grasp hook with a large adjustable wrench and turn the hook post to angle hook forward enough to make cable track properly.

C. 618 Cable broken or worn.
To replace cable, remove the Table Safety Stop 16813012 (Fig. 22). Remove cable long feed eyebolt 16213053 (Fig. 23). Slip cable off cable post 16213039. Move table to extreme right and lift off table. Put table on a bench with top down. Remove old cable. (Note directions of wind of the two loops of cable over cable roll 16213037. If cable is out of place, see middle view of Fig. 23 for proper direction for assembly) Tape an end of the new cable to the left underside of the carriage, near the front way. Bring the cable to the top of the cable roll and wind two clockwise turns onto the roll. Lead the cable on to the right and tape the end to the right underside of the carriage. Clean off the entire underside of the table so no grit will fall on the carriage, and place the table in position on the right side of the carriage.
Improve Longitudinal Feed

Cross Feed Malfunction

Remove the tape from the left end of the cable, and taking care to keep moderate tension on the cable (so it will not slip off the end of the cable roll), slip the cable over the cable post 16213039. Move the table to the left only enough to maintain tension on the cable. Remove tape from the right end of the cable, hook it over the long feed eyebolt, slip eyebolt through inner cable post 16213038 and tighten 1/4 - 20 nut to get moderate tension on the cable. (Light tension must be maintained on cable during the above so the cable does not slip off the end of cable roll.) Grasp cable under the left side of the table and pull to the front of the machine while cranking table back and forth until cable tracks evenly on the cable roll when observed from under left side of the table. (It may be necessary to readjust tension) Put no more tension on cable than is necessary, since this will cause a flat or wear on cable and can pull the table into a bow and cause inaccurate grinding. It should be possible to reposition the hand wheel by running the table to an end stop and slip it to the new position with very little extra force. Tighten the locknut on the eyebolt, and replace the table safety hook.

8. CROSSFEED MALFUNCTION

A. Hand feed wheel turns hard.
Be sure the cross feed lock thumbscrew has been loosened. (Right side of the base just under the saddle, (A Fig. 9)
Figure 18

SPINDLE ON/OFF SWITCH
PART LIST

![Diagram showing inner panel configuration]

PARTS LIST

<table>
<thead>
<tr>
<th>REF NO.</th>
<th>QTY</th>
<th>PART NO.</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>M2</td>
<td>2</td>
<td>17748721</td>
<td>Fuse Holder (600V-120V)</td>
</tr>
<tr>
<td>M2</td>
<td>2</td>
<td>-</td>
<td>See Chart #1</td>
</tr>
<tr>
<td>T1</td>
<td>1</td>
<td>-</td>
<td>See Chart #2</td>
</tr>
<tr>
<td>C-Cont</td>
<td>1</td>
<td>17747779</td>
<td>Contactor (Control Panel 01/PM-10-240V)</td>
</tr>
<tr>
<td>C-Cont</td>
<td>1</td>
<td>17747799</td>
<td>Contactor (Control Panel 02/PM-10-240V)</td>
</tr>
<tr>
<td>SW2</td>
<td>1</td>
<td>17747580</td>
<td>Switch Assy, SP, 2-Pos (Control Panel 02/PM-10)</td>
</tr>
<tr>
<td>SW2</td>
<td>1</td>
<td>-</td>
<td>See Chart #1</td>
</tr>
<tr>
<td>SW2</td>
<td>1</td>
<td>17747397</td>
<td>Fuse, 15A</td>
</tr>
<tr>
<td>SW2</td>
<td>1</td>
<td>17746839</td>
<td>Secondary Fan 411 (Amperes: 22/1600W)</td>
</tr>
<tr>
<td>T2</td>
<td>1</td>
<td>-</td>
<td>Transformer, 280V/480V Line Fuse Configuration</td>
</tr>
</tbody>
</table>

CHART #1: 412, 618 HANDHELD SPINDLE TYPES WITH FUSE AND OVERLOAD AMPERE VALUES AND PART NUMBERS

<table>
<thead>
<tr>
<th>LINE VOLTAGE</th>
<th>208V</th>
<th>230V</th>
<th>250V/277V</th>
<th>460V</th>
<th>LINE VOLTAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/2 H.P.</td>
<td>17746881</td>
<td>17746881</td>
<td>17746881</td>
<td>17746881</td>
<td>17746881</td>
</tr>
<tr>
<td>1/4 H.P.</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>1/3 H.P.</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>3/4 H.P.</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>1 H.P.</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>2 H.P.</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>3 H.P.</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

- N/A: Not Available

1.5 H.P.:

- N/A: Not Available

2.5 H.P.:

- N/A: Not Available

![Back view of front panel]

Intermediate: C, Heavy Duty Cabinet

Cable: 2

T1: (C1 Mounted on Intermediate C Panel 2way)
Figure 21

ELEVATING SCREW AND HAND WHEEL ASSEMBLY
Figure 22

CROSS FEED ASSEMBLY

16213064 TABLE STOP EXTERNAL (2)
16213065 TABLE STOP STUD
17741101 BEARING
15215233 PONTI
17734102 SCR 10-32 X 5/8 (3)
16215018 CROSSFEED GRADUATED SPRING
17733502 FINGER SCREW (2)
16215011 SPRING LOCKNUT (2)
16213010 CROSSFEED HANDWHEEL
17733101 SCR 5/16-20 X 1/4 (2)
17732079 1/4-20 X 1 1/4 SCREW
1621317 CRANK HANDLE
HANDWHEEL/NOB ASSEMBLY 1621313
CROSS FEED SCREW NUT/BLock ASSEMBLY 5 PITCH 16214301 / 10 PITCH 16214302
METRIC ASSEMBLY 16214303
BASE
17744102 O-RING
16213020 CROSSFEED SCREW GUARD

16813012 TABLE SAFETY STOP
(816's ONLY)

OIL CUP 17775050

CROSS FEED SPRING
.001" GRADUATION FOR 5 PITCH CROSS FEED 16213012
.005" GRADUATION FOR 10 PITCH CROSS FEED 16213018
.02 MM GRADUATION FOR METRIC CROSS FEED 16213043

Figure 22
LONGITUDINAL FEED CABLE,
RACK AND PINION
HANDFEED WITH LOW VOLTAGE (24V) START SYSTEM
BEGINNING DEC 1,1997

FRONT VIEW OF PANEL 612-618 HANDFEEDS

BACKVIEW OF PANEL 612-618 HANDFEEDS

PART NUMBERS
17742121 FUSE HOLDER FOR FU1-FU2
17747179 E-STOP SWITCH ASSY
17747180 SPINDLE SWITCH ASSY (SW1) LIGHTED
17746881 TRANSFORMER (T1) LOW VOLTAGE
17746838 SECONDARY FUSE KIT FOR FU3
17747911 FUSE FOR FU3 (FLM-3-AMP)
17747177 CONTACTOR (M1)

LUBE PUMPS
DEC, 1997 TO MARCH, 2000
115VOLT 16211506
208VOLT 16211507
230VOLT 16211507
MARCH, 2000 AND ON
24VOLT 16211500
ON ALL MACHINES

FUSE AND OVERLOAD CHART

208VOLT FOR 1-1/2 HP SPINDLE
FU1-FU2 .3A 17742137
OL1 4.6A 17747182
FOR 2-1/2 HP SPINDLE
FU1-FU2 .3A 17742137
OL1 6.1A 17747184

230VOLT FOR 1-1/2 HP SPINDLE
FU1-FU2 .3A 17742137
OL1 3.6A 17747178
FOR 2-1/2 HP SPINDLE
FU1-FU2 .3A 17742137
OL1 6.1A 17747184

460VOLT FOR 1-1/2 HP SPINDLE
FU1-FU2 .15A 17742124
OL1 1.8A 17747183
FOR 2-1/2 HP SPINDLE
FU1-FU2 .15A 17742124
OL1 3.4A 17747178

PART NUMBERS
17742121 FUSE HOLDER FOR FU1-FU2
17747179 E-STOP SWITCH ASSY
17747180 SPINDLE SWITCH ASSY (SW1) LIGHTED
17746881 TRANSFORMER (T1) LOW VOLTAGE
17746838 SECONDARY FUSE KIT FOR FU3
17747911 FUSE FOR FU3 (FLM-3-AMP)
17747177 CONTACTOR (M1)
ON-OFF SWITCHES

HANDFEED 1966 TO 1981 BASE MOUNTED ON-OFF SWITCH WITH MARCH PUMP

ORIGINAL PART # 17747701
230 OR 460 VOLT
CURRENT PART # 17747829
AVAILABLE IN 230V ONLY
460V REQUIRES EXTERNAL MOUNTED SWITCH

MARCH PUMP#
17746506 115V
17746507 230V
17746508 208V

CURRENT PART#
16211506
16211507

HANDFEED 1982 TO DEC 1,1997 CABINET MOUNTED FULL VOLTAGE SWITCHES

START
EMERGENCY STOP

LUBE PUMPS

FROM 1982 TO MARCH 1989
MARCH PUMP# CURRENT PART#
17746506 –115VOLT 16211506 -115V
17746507 –230VOLT 16211507 –208/230V
17756508 –208VOLT 16211507 –208/230V

FROM MARCH 1989 TO NOV 1997
INTERLUBE PUMP# CURRENT PART#
16213506 –115VOLT 16211506- 115V
16213507 208/230VOLT 16211507-208/230V

ON-OFF SWITCHES

ORIGINAL # DESCRIPTION
17747130 1HP AT 208-230V / 1-1/2 HP 230V ONLY
17747131 208-230V FOR MACHINES WITH BUILT IN DUST COLLECTOR
17747132 1HP 460V
17747133 1HP 380-420V 50CYCLE
17747134 1-1/2 & 2-1/2HP 208V ONLY
17747135 2-1/2HP 460V
17747136 2-1/2HP 230V
17747138 460V FOR MACHINES WITH BUILT IN DUST COLLECTOR
17747146 1-1/2HP 460V

CROSS REFERENCE TO NEW PART NUMBERS

ORIGINAL # NEW NUMBER
17747130 17742500
17747131 17742501
17747132 17742502
17747133 SPEC ORDER
17747134 17742503
17747135 17742504
17747136 17742505
17747138 17742506
17747146 17742513

CONSULT FACTORY FOR SPECIAL VOLTAGES OR SPINDLES WITH OTHER HP RATINGS